Derivations and Stabilizing Automorphisms

Bennett Rennier
bennett@brennier.com

May 9, 2019

1 Derivations

The material for this section can be found in Hilton-Stammbach [1].
Definition 1. Let G be a group and let A be a G-module. A derivation (also known as a crossed homomorphism) is a function $d: G \rightarrow A$ such that

$$
d(x y)=x d(y)+d(x)
$$

We let $\operatorname{Der}(G, A)$ denote the set of all derivations and note that it forms an abelian group under pointwise addition in the image. We also note that $d(1)=0$ as

$$
d(1)=d(1 \cdot 1)=1 d(1)+d(1)=2 d(1) .
$$

Definition 2. An important class of derivations to look at are those of the form $d_{a}(x)=x a-a$ for some $a \in A$ which we call principal derivations (also known as inner derivations). We see these are indeed derivations as

$$
\begin{aligned}
d_{a}(x)+x d_{a}(y) & =x a-a+x(y a-a) \\
& =x a-a+x y a-x a \\
& =x y a-a \\
& =d_{a}(x y) .
\end{aligned}
$$

We let $\operatorname{PDer}(G, A)$ denote the set of all principal derivations and note that these form of a subgroup of $\operatorname{Der}(G, A)$ as $d_{a}-d_{b}=d_{a-b}$.

Example 3. Now derivations are connected to semidirect products. Recall that if G is a group and A is a G-module, then their semidirect product $A \rtimes G$ comes equipped with maps i and p such that $0 \rightarrow A \xrightarrow{i} A \rtimes G \xrightarrow{p} G \rightarrow 1$ is exact. We can consider $i(A)$ as a $A \rtimes G$-module under the action of conjugation. That is

$$
(b, x) \cdot(a, 1) \cdot\left(-x^{-1} b, x^{-1}\right)=(x a, 1),
$$

which means we can consider A as a $A \rtimes G$-module under the action $(b, x) \cdot a=x a$. Note that we also have a projection map $q: A \rtimes G \rightarrow A$ where $q(a, x)=a$. This is projection is not a group
homomorphism; however, it is a derivation as

$$
\begin{aligned}
q((a, x) \cdot(b, y)) & =q(a+x b, x y) \\
& =a+x b \\
& =q(a, x)+(a, x) \cdot b \\
& =q(a, x)+(a, x) \cdot q(b, y) .
\end{aligned}
$$

In fact, we have following universal property of derivations in terms of semidirect products.
Proposition 4. Suppose that G is a group and A is a G-module. If we have a group homomorphism $f: X \rightarrow G$ and a derivation $d: X \rightarrow A$ (with A is regarded as an X-module using f), there is a unique group homomorphism $h: X \rightarrow A \rtimes G$ such that the following diagram commutes:

Conversely, every group homomorphism $h: X \rightarrow A \rtimes G$ induces a homomorphism $f: X \rightarrow G$ and a deriviation $d: X \rightarrow A$.

Proof. The proof is quite straightforward. We can simply define h to be $h(x)=(d(x), f(x))$ for all $x \in X$. We see that such an h is a group homomorphism as

$$
\begin{aligned}
h(x) h(y) & =(d(x), f(x))(d(y), f(y)) \\
& =(d(x)+d(y) f(x), f(x) f(y)) \\
& =(d(x)+x d(y), f(x) f(y)) \\
& =(d(x y), f(x y)) \\
& =h(x y) .
\end{aligned}
$$

The converse is also quite easy; we can simply take $f=p h: X \rightarrow G$ and $d=q h: X \rightarrow A$. It is clear that f is a homomorphism as p and h are both homomorphisms. We see that d is a derivation as q is a derivation and so

$$
\begin{aligned}
d(x y) & =q(h(x y)) \\
& =q(h(x) h(y)) \\
& =h(x) \cdot q(h(y))+q(h(x)) \\
& =h(x) \cdot d(y)+d(x) \\
& =p(h(x)) d(y)+d(x) \\
& =f(x) d(y)+d(x) \\
& =x d(y)+d(x) .
\end{aligned}
$$

Corollary 5. We note that in particular, if we take $X=G$ and $f=1_{G}$, we have that the set of derivations from G to A is in one-to-one correspondence with group homomorphisms $f: G \rightarrow A \rtimes G$
where $p f=1_{G}$, which are the lifts of the exact sequence $0 \rightarrow A \xrightarrow{i} A \rtimes G \xrightarrow{p} G \rightarrow 1$. This means that a lift $\ell: G \rightarrow A \rtimes G$ is a homomorphism if and only if $\ell(x)=(d(x), x)$ for some derivation d.
We can also use derivations to describe the first cohomology group $H^{1}(G, A)$. To show this connection, we first prove the following:

Theorem 6. The groups $\operatorname{Der}(G, A)$ and $\operatorname{Hom}_{G}(I G, A)$ are isomorphic under the map $\phi: \operatorname{Der}(G, A) \rightarrow$ $\operatorname{Hom}_{G}(I G, A)$, where ϕ sends a derivation d to the homomorphism ϕ_{d} defined by $\phi_{d}(y-1)=d(y)$.

Proof. Let $d: G \rightarrow A$ be a derivation; we want to show that $\phi_{d}=\phi(d)$ is a G-module homomorphism. We see this is the case as

$$
\begin{aligned}
\phi_{d}(x(y-1)) & =\phi_{d}((x y-1)-(x-1)) \\
& =d(x y)-d(x) \\
& =d(x)+x d(y)-d(x) \\
& =x \cdot \phi_{d}(y-1) .
\end{aligned}
$$

To prove that this is an isomorphism, we construct an inverse. Let $\psi: \operatorname{Hom}_{G}(I G, A) \rightarrow \operatorname{Der}(G, A)$ be the map that sends a G-module homomorphism $f: I G \rightarrow A$ to the map $\psi_{f}: G \rightarrow A$ where $\psi_{f}(y)=f(y-1)$. We see that ψ_{f} is a derivation as

$$
\begin{aligned}
\psi_{f}(x y) & =f(x y-1) \\
& =f(x(y-1)+(x-1)) \\
& =x f(y-1)+f(x-1) \\
& =x \psi_{f}(y)+\psi_{f}(x) .
\end{aligned}
$$

Since we have that $\psi_{\phi_{d}}(y)=\phi_{d}(y-1)=d(y)$ and that $\phi_{\psi_{f}}(y-1)=\psi_{f}(y)=f(y-1)$, we see that these maps are indeed inverses. This proves that ϕ is an isomorphism.

Corollary 7. There is an isomorphism

$$
H^{1}(G, A) \simeq \frac{\operatorname{Der}(G, A)}{\operatorname{PDer}(G, A)}
$$

Proof. Recall that if we start with the short exact sequence $0 \rightarrow I G \xrightarrow{i} \mathbb{Z} G \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0$, we can then apply Ext to the get the following long exact sequence:

$$
\ldots \longrightarrow \operatorname{Hom}_{G}(\mathbb{Z} G, A) \xrightarrow{i^{*}} \operatorname{Hom}_{G}(I G, A) \longrightarrow H^{1}(G, A) \longrightarrow \operatorname{Ext}^{1}(\mathbb{Z} G, A) \longrightarrow \ldots
$$

Since $\operatorname{Ext}^{1}(\mathbb{Z} G, A)=0$ as $\mathbb{Z} G$ is projective, we have that $H^{1}(G, A) \simeq \operatorname{Hom}_{G}(I G, A) / \operatorname{im}\left(i^{*}\right)$. Furthermore, we have an isomorphism between $\operatorname{Hom}_{G}(\mathbb{Z} G, A)$ that sends the map $\phi: \mathbb{Z} G \rightarrow A$ to the element $\phi(1)$ where $\phi(x)=x \phi(1)$. Thus, the image of i^{*} are the maps of the form $\phi: I G \rightarrow A$ where $\phi(x)=x a$. We see then that $\phi(x-1)=(x-1) a=x a-a$, meaning the image of i^{*} are exactly the principal derivations from G to A. This proves that

$$
H^{1}(G, A) \simeq \frac{\operatorname{Hom}_{G}(I G, A)}{\operatorname{im}\left(i^{*}\right)} \simeq \frac{\operatorname{Der}(G, A)}{\operatorname{PDer}(G, A)}
$$

Now, we can also use derivations to prove some useful things about the homology and cohomology of free groups.

Theorem 8. If F is the free group over a set S, then its augmentation ideal $I F$ is a free F-module over the set $S-1=\{s-1: x \in S\}$.

Proof. Recall that $I F$ is generated by the set $F-1$. Since F is generated by S, this means that $I F$ is generated by $S-1$. Thus, if we have a set function $f: S-1 \rightarrow M$ for some F-module M, then there's only one possible extension to $f: I F \rightarrow M$. By proving that we can always make such an extension, we can conclude that $I F$ is a free F-module over the set $S-1$.

So, let M be a F-module and let $f: S-1 \rightarrow M$ be some set function. Since F is free over the set S, we can define a homomorphism $\tilde{f}: F \rightarrow M \rtimes F$, where $\tilde{f}(s)=(f(s-1), s)$. Since this is a homomorphism, Corollary 5 proves that $d: F \rightarrow M$ where $d(s)=f(s-1)$ is a derivation. By Theorem 6, we have that $f^{\prime}=\phi(d)$ is a F-module homomorphism from $I F$ to M where $f^{\prime}(s-1)=d(s)=f(s-1)$. This f^{\prime} is the desired extension of f, concluding the proof.

Corollary 9. If F is a free group, then

$$
H^{n}(F, A)=0=H_{n}(F, B)
$$

for any F-modules A and B and for all $n \geq 2$.
Proof. We recall that

$$
H^{n}(F, A)=H^{n}\left(\operatorname{Hom}_{G}\left(F_{*}, A\right)\right) .
$$

where F_{*} is a projective resolution of F. Since $I F$ and $\mathbb{Z} F$ are both free F-modules, we have that

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow I F \rightarrow \mathbb{Z} F \rightarrow \mathbb{Z}
$$

is a free resolution of \mathbb{Z}. As this is also a projective resolution and $F_{n}=0$ for $n \geq 2$, we see that $H^{n}(F, A)=0$. Similarly, $H_{n}(F, A)=0$ for $n \geq 2$.

We can find another way of representing derivations and the second cohomology group, which is the topic of the next section.

2 Stabilizing Automorphisms

The material for this section can be found in Rotman [2]; though, most of the proofs have been modified and simplified to fit into the framework of the previous section.

A concept that we will see is very related to derivations are stablizing automorphisms. To begin, let G be a group and let A be a G-module so that $0 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$ is an extension. This means that if we choose a lift $\ell: G \rightarrow E$, then every element of $e \in E$ can be written as $e=a+\ell(x)$ for some $a \in A$ and $x \in G$.
Definition 10. Now a Stabilizing Automorphism of an extension $0 \xrightarrow{i} A \rightarrow E \xrightarrow{p} G \rightarrow 1$ is an automorphism $\phi: E \rightarrow E$ such that the following diagram commutes

We let $\operatorname{Stab}(G, A)$ be the group of all stablizing automorphisms. Surprisingly, we already have a pretty good idea about this group.

Proposition 11. Let G be a group, A be a G-module, and $0 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$ be an extension. Now if $\ell: G \rightarrow E$ is some lifting, then $\phi: E \rightarrow E$ is a stabilizing automorphism if and only if it has the form

$$
\phi(a+\ell(x))=a+d(x)+\ell(x)
$$

where $d: G \rightarrow A$ is a derivation. Morever, this derivation d is independent of our choice of lifting ℓ.
Proof. Let $\phi: E \rightarrow E$ be a stabilizing automorphism and $\ell: G \rightarrow E$ be a lifting. Then by the diagram in Definition 10, it must be that $\phi(a)=a$ and that $p \phi=p$. We can use this second condition to see that $\phi(\ell(x))=d(x)+\ell(y)$ for some function $d: G \rightarrow A$. Since we have that

$$
x=p(\ell(x))=p \phi(\ell(x))=p(d(x)+\ell(y))=y,
$$

so it must be that $x=y$ and that

$$
\phi(a+\ell(x))=\phi(a)+\phi(\ell(x))=a+d(x)+\ell(x) .
$$

Now before we prove that d must be a derivation, we will first prove that it is independent of our choice of ℓ. To do this, let $\ell^{\prime}: G \rightarrow E$ be another lifting such that $\phi\left(a+\ell^{\prime}(x)\right)=a+d^{\prime}(x)+\ell^{\prime}(x)$ for some function d^{\prime}. Since $p \ell^{\prime}(x)=x=p \ell(x)$, there there is some $k: G \rightarrow A$ such that $\ell^{\prime}(x)=$ $k(x)+\ell(x)$. We see then

$$
\begin{aligned}
d^{\prime}(x) & =\phi\left(\ell^{\prime}(x)\right)-\ell^{\prime}(x) \\
& =\phi(k(x)+\ell(x))-\ell^{\prime}(x) \\
& =k(x)+d(x)+\ell(x)-\ell^{\prime}(x) \\
& =d(x)+\ell^{\prime}(x)-\ell^{\prime}(x) \\
& =d(x) .
\end{aligned}
$$

This proves that the function d is independent of our choice of lifting. Now we need only to show that d is indeed a derivation. Recall that there is a factor set $f: G \times G \rightarrow A$ where $\ell(x)+\ell(y)=$ $f(x, y)+\ell(x y)$ for all $x, y \in G$. We see that

$$
\begin{aligned}
\phi(\ell(x)+\ell(y)) & =\phi(\ell(x))+\phi(\ell(y)) \\
& =d(x)+(\ell(x)+d(y)-\ell(x))+\ell(x)+\ell(y) \\
& =d(x)+x d(y)+\ell(x)+\ell(y) \\
& =d(x)+x d(y)+f(x, y)+\ell(x y) .
\end{aligned}
$$

However, computed another way, we also see that

$$
\begin{aligned}
\phi(\ell(x)+\ell(y)) & =\phi(f(x, y)+\ell(x y)) \\
& =\phi(f(x, y))+\phi(\ell(x y)) \\
& =f(x, y)+\phi(\ell(x y)) \\
& =f(x, y)+d(x y)+\ell(x y) .
\end{aligned}
$$

Comparing these two, we obtain

$$
d(x)+x d(y)+f(x, y)+\ell(x y)=f(x, y)+d(x y)+\ell(x y)
$$

If we then cancel the $\ell(x y)$ on both sides, we rest of the terms all lie in the abelian group A, so we can rearrange as we like and cancel the $f(x, y)$ term to obtain that

$$
d(x y)=d(x)+x d(y)
$$

which proves that d is a derivation.
Now conversely, let ϕ be a map of the form $\phi(a+\ell(x))=a+d(x)+\ell(x)$ where $d: G \rightarrow A$ is a derivation. We see that $\phi(a, 0)=a$ and that $p(\phi(a+\ell(x)))=p(a+d(x)+\ell(x))=\ell(x)=p(a+\ell(x))$. Thus, the following diagram commutes

If we let $f: G \times G \rightarrow A$ be the factor set such that $\ell(x)+\ell(y)=f(x, y)+\ell(x y)$, we can see that ϕ is a homomorphism as

$$
\begin{aligned}
\phi(a+\ell(x)+b+\ell(y)) & =\phi(a+b+f(x, y)+\ell(x y)) \\
& =(a+b+f(x, y))+d(x y)+\ell(x y) \\
& =a+b+(d(x)+x d(y))+f(x, y)+\ell(x y) \\
& =a+b+d(x)+(\ell(x)+d(y)-\ell(x))+\ell(x)+\ell(y) \\
& =(a+d(x)+\ell(x))+(b+d(y)+\ell(y)) \\
& =\phi(a+\ell(x))+\phi(b+\ell(y))
\end{aligned}
$$

This means we can apply the Five Lemma to deduce that ϕ is an isomorphism, and thus ϕ is a stablizing automorphism.

We also see that not only are derivations and stabilizing automorphisms in a 1-1 correspondence, they are also isomorphic as groups, which we will now prove.

Theorem 12. The group of stabilizing automorphisms $\operatorname{Stab}(G, A)$ is isomorphic to the group of derivations $\operatorname{Der}(G, A)$.

Proof. According to the previous proposition, if $\phi: E \rightarrow E$ is a stabilizing automorphism, then $\phi(a+\ell(x))=a+d(x)+\ell(x)$ where d is a derivation and ℓ is any lifting. So, we let $\sigma: \operatorname{Stab}(G, A) \rightarrow$ $\operatorname{Der}(G, A)$ be the map that sends a stabilizing automorphism to the derivation associated with it in this way. We see that if $\sigma(\phi)=d_{1}$ and $\sigma(\psi)=d_{2}$, then

$$
\begin{aligned}
(\psi \circ \phi)(a+\ell(x)) & =\psi(\phi(a+\ell(x))) \\
& =\psi\left(a+d_{1}(x)+\ell(x)\right) \\
& =\psi\left(\left(a+d_{1}(x)\right)+\ell(x)\right) \\
& =\left(a+d_{1}(x)\right)+d_{2}(x)+\ell(x) \\
& =a+\left(d_{1}(x)+d_{2}(x)\right)+\ell(x) .
\end{aligned}
$$

This shows that $\sigma(\psi \circ \phi)=d_{1}+d_{2}$, proving that σ is a homomorphism. Since the previous proposition stated that this is a 1-1 correspondence, we have that σ is an isomorphism as desired.

Remark. Surprisingly, this proves that even though the operation of the group $\operatorname{Stab}(G, A)$ is function composition, it's actually an abelian group as $\operatorname{Der}(G, A)$ is abelian. Moreover, this also implies that $\operatorname{Stab}(G, A)$ does not depend on the extension E at all.

To continue the analogy with derivations, we'll show that principal derivations correspond with a nice subgroup of stablizing automorphism.

Definition 13. An inner stablizing automorphism $\phi: G \rightarrow E$ is a stabilizing automorphism such that for some $b \in A, \phi(a+\ell(x))=-b+a+\ell(x)+b$. We denote the subgroup of inner stabilizing automorphisms as $\operatorname{InnStab}(G, A)$.
Remark. As a correction to a subtle mistake in Rotman, it should be noted that the group of inner stabilizing automorphisms is not the same as the group $\operatorname{Stab}(G, A) \cap \operatorname{Inn}(E)$. Only stabilizing automorphisms that act by conjugation with an element of A are considered inner stabilizing automorphisms. In fact, we will provide an example to show that it is possible that $\operatorname{InnStab}(G, A)$ is a proper subgroup of $\operatorname{Stab}(G, A) \cap \operatorname{Inn}(E)$. Consider the extension

$$
0 \rightarrow Z\left(Q_{8}\right) \xrightarrow{\iota} Q_{8} \xrightarrow{\pi} G \rightarrow 1
$$

where Q_{8} is the quaternion group of order $8, Z\left(Q_{8}\right)$ is the center of Q_{8} (i.e. $Z\left(Q_{8}\right)=\{-1,1\}$), and $G=Q_{8} / Z\left(Q_{8}\right)$. Let $\phi: Q_{8} \rightarrow Q_{8}$ be defined as conjugation by i, that is $\phi(x)=i x(-i)$. Since ϕ is the is the identity on $Z\left(Q_{8}\right)$ and $\phi(x)=i x(-i) \in\{x,-x\}$, we see that the following diagram commutes

This proves that $\phi \in \operatorname{Stab}\left(G, Z\left(Q_{8}\right)\right) \cap \operatorname{Inn}\left(Q_{8}\right)$. However, conjugation by an element of $Z\left(Q_{8}\right)$ is trivial since it is the center of Q_{8}. This means that $\operatorname{InnStab}\left(G, Z\left(Q_{8}\right)\right)=\left\{1_{Q_{8}}\right\}$. Since ϕ is not the identity map, we have that $\operatorname{InnStab}\left(G, Z\left(Q_{8}\right)\right) \subsetneq \operatorname{Stab}\left(G, Z\left(Q_{8}\right)\right) \cap \operatorname{Inn}\left(Q_{8}\right)$.

Proposition 14. Let $0 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$ be an extension and let $\ell: G \rightarrow E$ be a lifting. Then $\phi: E \rightarrow E$ is an inner stablizing automorphism if and only if it has the form

$$
\phi(a+\ell(x))=a+d_{b}(x)+\ell(x)
$$

where d_{b} is a principal derivation.
Proof. If $\phi: E \rightarrow E$ has the form $\phi(a+\ell(x))=a+d_{b}(x)+\ell(x)$ for some principal derivation d_{b}, then ϕ we know from Proposition 11 that ϕ is a stabilizing automorphism. We also see that

$$
\begin{aligned}
\phi(a+\ell(x)) & =a+d_{b}(x)+\ell(x) \\
& =a+(x b-b)+\ell(x) \\
& =-b+a+x b+\ell(x) \\
& =-b+a+(\ell(x)+b-\ell(x))+\ell(x) \\
& =-b+a+\ell(x)+b
\end{aligned}
$$

which proves that ϕ acts by conjugation, meaning that it is an inner stabilizing automorphism.
Conversely, suppose that ϕ is an inner stabilizing automorphism. Since ϕ is a stabilizing automorphism, we know it has the form $\phi(a+\ell(x))=a+d(x)+\ell(x)$ for some derivation d.

Additionally, since ϕ is an inner automorphism, we know that for some $b \in A$ we have that $\phi(a+\ell(x))=-b+(a+\ell(x))+b$. We see that

$$
\begin{aligned}
\phi(a+\ell(x)) & =-b+a+\ell(x)+b \\
& =-b+a+\ell(x)+b-\ell(x)+\ell(x) \\
& =-b+a+x b+\ell(x) \\
& =a+(x b-b)+\ell(x) \\
& =a+d_{b}(x)+\ell(x),
\end{aligned}
$$

which completes the proof.
Corollary 15. Since Theorem 12 and Proposition 14 state that $\operatorname{Stab}(G, A) \simeq \operatorname{Der}(G, A)$ and $\operatorname{InnStab}(G, A) \simeq \operatorname{PDer}(G, A)$ respectively, we can use Corollary 7 to reinterpret the first cohomology group as

$$
H^{1}(G, A) \simeq \frac{\operatorname{Stab}(G, A)}{\operatorname{InnStab}(G, A)}
$$

Theorem 16. Let $0 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$ be a split extension and let C and C^{\prime} both be complements of A in E. Then if $H^{1}(G, A)=\{0\}$, then C and C^{\prime} are conjugate subgroups.

Proof. As $E=A \rtimes G$, we have liftings $\ell: G \rightarrow E$ and $\ell^{\prime}: G \rightarrow E$ which have images C and C^{\prime} respectively. By the Corollary 5, we have that $\ell(x)=(d(x), x)$ and $\ell^{\prime}(x)=\left(d^{\prime}(x), x\right)$ where $d, d^{\prime}: G \rightarrow A$ are derivations. This means that $h(x)=\ell(x)-\ell^{\prime}(x)=\left(d(x)-d^{\prime}(x), 0\right)$ is a derivation. Since $H^{1}(G, A)=\{0\}$, it must be that $\operatorname{Der}(G, A)=\operatorname{PDer}(G, A)$. Thus, $h(x)$ is a principal derivation, that is, $h(x)=x a-a$ for some $a \in A$. This shows that

$$
\begin{aligned}
\ell(x) & =h(x)+\ell^{\prime}(x) \\
& =(x a-a)+\ell^{\prime}(x) \\
& =-a+\ell^{\prime}(x)+a-\ell^{\prime}(x)+\ell^{\prime}(x) \\
& =-a+\ell^{\prime}(x)+a .
\end{aligned}
$$

This proves that $\operatorname{im}(\ell)=C$ and $\operatorname{im}\left(\ell^{\prime}\right)=C^{\prime}$ are conjugate subgroups.

References

[1] Hilton Peter, Stammbach Urs. "A course in homological algebra." Springer Science \& Business Media - 2012. - Vol. 4 - P. 194-197.
[2] Rotman Joseph. "An introduction to homological algebra." Springer Science \& Business Media - 2008. - Vol. 1 - P. 514-518.

